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The presence of streamwise vorticity in the vicinity of the wing tip contributes to lift in thin flat plate zero pitch
angle flapping wings in quiescent air. In creating flapping wing micro air vehicles it is desirable to maintain only the
mechanical and kinematic complexity absolutely necessary to artificially duplicate flapping wing flight. This study
quantifies the lift generated from a flapping motion of absolute minimum complexity thought to be capable of
generating lift. Using a flapping wing micro air vehicle with wings fabricated in-house, streamwise vortices were
identified along the span of wings of various aspect ratios and at numerous different points throughout the flapping
cycle under a variety of operating conditions. The lift generated by the flapping mechanism was quantified
experimentally using a force transducer and a high speed camera. Digital particle image velocimetry was used to
determine the contributions of streamwise vorticity to the total measured lift. Further evidence was found of the
importance of the relationship between wing span and flapping frequency in the nature of the formation and

shedding of vortices.

Nomenclature

D = drag force

f = wing beat frequency

I = unittensor

L = lift force

I = winglength

T = stress tensor

T* = normalized time (temporal location in the flapping cycle *
flapping frequency)

U, = velocity field into freestream

u = velocity

' = perturbation components where u = Uy +

x = position vector from the center of the body to the location
of vorticity

o = angular acceleration

I, = circulation about the z axis

® = wing beat amplitude (peak to peak, in radians)

o = angular velocity

w, = Vvorticity vector in two-dimensional flow about the z axis

L

IXED wing micro air vehicles (MAVs) have been sufficiently

investigated to the point where their operational limitations and
opportunities for growth are well understood. The areas of gust
tolerance and maneuverability, in particular, are rather limiting.
These limitations have spurred interest in flapping and rotary wing
MAV development. A number of commercial “ornithopters” are
available for purchase, and several others have been developed at
academic institutions. In general, these ornithopters offer limited
range and payload and are incapable of hover. The process used to
arrive at the store-bought ornithopter designs is proprietary and the
development is often based on a trial and error approach to
optimization.
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Much work has been published in an effort to better understand
both bird and insect flight. Most efforts focus on deconstructing bird
and insect kinematic motion into its constitutive elements and
deducing or measuring the aerodynamic effects of these motions. At
a recent U.S. Air Force Office of Scientific Research (AFOSR)
sponsored workshop on biologically inspired flight for MAVs [1], a
consensus was reached among numerous experts in flapping wing
fluid physics that in the process of studying animal flight, and in the
creation of commercial ornithopters, some fundamental questions
have yet to be answered. It was the recommendation of the workshop
fluid physics group from the perspective of flapping wing MAV
development that a set of “canonical” problems be developed from
the simplest possible cases with complexity added to subsequent
iterations. It was believed that these canonical problems could
provide some context for the much more complex and unsteady
aerodynamics associated with real animal flapping kinematics. One
of the simple cases proposed for study was pure flapping in quiescent
air which is the topic of the present study.

II. Lift from Vorticity
A. Lift from Vorticity over Fixed Wings

Leading-edge vortices that are produced in the well-studied case
of delta wings induce a field of low pressure on the suction side of the
wing. Such effects have been found to be tremendously effective in
lift augmentation at low speeds and in unsteady flows (Taylor et al.
[2]). However, swept wing research, and more specifically delta wing
research, has for the most part focused on the disadvantages of and
the problems associated with vortex effects on lift. As demonstrated
in Fig. 1, in many instances, a vortex held or trapped above other
types of lifting surfaces has been shown to generate lift [3.4].
Similarly, Kasper (Cox) [3] and Rossow [6] have also suggested a
method to generate and maintain vortices on the upper surface of
high aspect ratio wings.

B. Lift from Vorticity over Flapping Wings

A recurring theme in the flapping wing literature is the importance
of understanding vortex shedding and how the vortices behave when
they separate from the moving surface that created them. In flapping
flight, birds and insects can modify wing beat amplitude, stroke
angle, wing planform area (birds), angle of attack, and to a lesser
extent flapping frequency to optimize the generation of vortices.

In flapping wings, several unsteady effects are thought to use
circulation to augment lift force. One of these is a rotational
mechanism termed clap and fling (Weis-Fogh [7]) and can be seen in
Fig. 2a. The wings clap together at the end of the upstroke and peel
apart at the beginning of the downstroke, rotating about their trailing
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Fig. 1 Lift augmentation by trapping of a vortex (Riddle et al. [4], Huang and Chow [28]). a) Pressure distribution along the airfoil (dashed line
represents baseline, no flap, case); b) trapped vortex over the airfoil; c¢) trapping of a vortex by a Joukowski airfoil.

edges and producing an initial strong bound vortex on each wing of
equal and opposite sign. This fling-induced circulation can be large
for high rotational velocities and enhances the downstroke lift.
Rotational circulation (Dickinson et al. [8]) results from the
interaction of translational and rotational velocity of the wing
(Fig. 2b). Wake capture (Birch and Dickinson [9]) is a result of the
interaction of the wing, when it inverts its motion, with the wake
generated in the previous stroke (Fig. 2c). The wing benefits from the
shed vorticity of the previous stroke.

Although wake capture is likely occurring in the experiments
performed for this research, its effects will not be isolated. Delayed
stall (Dickinson and Gotz [10]) is the result of the translational
motion of the wing and it depends only on the wing translational
velocity and angle of attack (Fig. 2d). Delayed stall causes the
formation of a leading-edge vortex (LEV) that reduces pressure over
the wing and this phenomenon is considered the most directly
relevant to the present research.

Delayed stall and the LEV can produce flow velocity magnitudes
in the spanwise direction of the same or greater magnitude than flow
velocities in the streamwise direction. These large spanwise
velocities are often in the form of axial flow in the core of the vortex

c)

[11,12]. This flow characteristic has been largely ignored with the
exception of its suspected contribution to the stabilization of the
leading-edge vortex.

Changing the focus from the chordwise to the spanwise plane,
other research has demonstrated that vortices on the wing tip
contribute to the generation of aerodynamic force in some fixed and
flapping wings [9,13]. Generally, the flapping wing vortices and their
influence have been divided into three distinct regions: the tip vortex,
the leading-edge vortex, and an interaction zone [14] (see Fig. 3).

During the latter half of the downstroke, the core of the leading-
edge vortex breaks down at 60-70% of the wing span and separates
from the wing. The separated vortex feeds into a large tip vortex. The
tip vortex runs back to the starting vortex shed at the beginning of the
downstroke. In flapping insects, the leading-edge vortex also runs
along each wing to the wing tip, where it rotates to form the wing tip
trailing vortex [15].

These wing tip vortices in the spanwise plane (streamwise
vorticity) during the downstroke of the flapping motion might
influence the generation of lift force. Maxworthy [16] identified the
presence of the wing tip vortex with a flapping mechanism in a tank
of glycerine (Fig. 4). These vortices were entirely responsible for the
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Fig. 2 Unsteady aerodynamics of flapping wings (Anders [29]). a) Clap and fling: the wings clap together at the end of the upstroke and peel apart at the
beginning of the downstroke. b) Rotational circulation: the insect rotates its wings (dotted lines) creating a vortex, resulting in a propulsive force (left).
¢) Wake capture: the insect rotates its wing (dotted lines) and then the wing intersects its own wake and captures its energy in the form of lift (right).
d) Delayed stall: causes the formation of a leading-edge vortex that reduces pressure over the wing.
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Fig. 3 The three classes of leading-edge vortex (LEV) and tip vortex
(Bomphrey et al. [13]). a) The Maxworthy [30] model; b) the structure
described by Luttges [31]; c) the structure described by Ellington [12]
and Van den Berg [32]. Spanwise (axial) flow is marked by arrows in each
case. Vertical planes show simplified flow topology at the centerline and
midwing positions.

center of the body

Fig. 4 Streamwise vorticity over a flapping mechanism in a tank bf
glycerine (Maxworthy [16]).

lift on the wings. Warrick et al. [17] mention that the tip vortices in
hovering can even support the body weight of hummingbirds.

This study was performed first to identify the presence or absence
of large-scale streamwise vortices in a kinematically simple flapping
motion. If the presence of these vortices is identified, the order of
magnitude of their contribution to the aerodynamic force will be
determined. Temporal variation of the vortex force will be discussed
and the influence of wing geometry on vortex formation and
shedding is included.

III. Experimental Approach

In an effort to reduce the problem to its simplest form and isolate
the effects of streamwise vorticity, flat plate wings were given a
motion that can best be described as single hinged pure flapping
(downstroke and upstroke) with no flapping stroke plane inclination
angle. The chordwise pitch angle was fixed at zero degrees, or
perfectly horizontal as viewed from the tip. The experiments were
performed in quiescent air (no freestream velocity). In addition, this
particular experimental setup guarantees that the origins of any
vorticity creation or vortex shedding are independent of freestream
influence and are due explicitly to the pure flapping motion itself. No
effort was made to isolate the effects of wake capture as the study was
intended only to identify the contributions of streamwise circulation
and not necessarily isolate every possible contributor to the origins or
interactions of this circulation.

To determine the magnitude of the contribution of streamwise
vorticity to the total aerodynamic force, the total aerodynamic force

was first isolated and quantified. The total force generated was
measured with a force transducer. Inertial and added mass effects
were then considered. The procedure will be explained further in the
next section.

One method of determining the inertial contributions in flapping
wings includes a vacuum container and a brass rod substituting for
the uniform wing. An accelerometer can also measure the force due
to the mass of wing at the mechanism’s body center as shown by Bilo
et al. [18]. The inertial force produced by the motion of the wing
cannot accelerate the mechanism’s center of mass. Sane and
Dickinson [19] used the blade element method to estimate the inertial
forces and Singh et al. [20] developed theoretical methods to
calculate the inertial force. In this experiment, a high frame rate
camera was used to take images of the flapping mechanism/wing
using a fixed frame rate (constant time interval between images).

With an isolated aerodynamic force, digital particle image
velocimetry (DPIV) was used to determine velocity and vorticity
distributions over the wing. Circulation was calculated from the
vorticity and was subsequently used to estimate lift force due to
streamwise vorticity. Wing tip vortex flow visualization during
the beginning and middle of the downstroke under various
conditions was also included to provide a visual context for these
phenomena.

A. Experimental Setup

The total lift force was measured using an Interface SSM-A5-250
“S” beam force transducer with a maximum error of 0.025 Ibs, a
maximum nonrepeatability of less than 0.02%, and a maximum creep
in 20 min of less than 0.025%. The net aerodynamic force is
determined from this measured total force by subtracting the
experimentally determined inertial contribution. A high frame rate
camera (FASTCAM—Ultima ADX-1000 frame/s) was used to
permit experimental determination of the inertial forces of the
flapping mechanism.

The inertial force is defined as the force due to mass and
acceleration of the flapping mechanism, and it can be obtained using
Newton’s second law (F = ma). Angular velocity and angular
acceleration were obtained by analyzing these images. The forces in
the x and y directions of the flapping mechanism are calculated using
angular velocity and angular acceleration and assuming uniform
mass distribution.

wz% (la)
o =%‘: (1b)
Vr=row (le)
ar =roa (1d)

where V; and a; are the tangential velocity and acceleration of the
wings, respectively.

Flapping angles are then used to generate the inertial force
distribution from a set of experimentally determined discrete points.
To obtain the inertial force variation, the smoothed flapping angle
distribution was approximated with a polynomial curve fit of order
greater than 2. Then, using F = m - a and Eq. (1), the inertial force in
the y axis (the axis aligned with lift and gravity) is obtained.

Sane and Dickinson’s [19] treatment of added mass inertia for an
infinitesimally thin two-dimensional plate in an inviscid fluid
determined that for their experimental setup added mass effects were
relatively small. Although they were using dissimilar kinematics to
those used in this study, there were regions where the motion was
similar. In the regions where linear velocity of the wing was not
constant, the contributions of added mass inertia were still quite
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Fig. 6 PIVimage planes. a) The spanwise plane atleading edge 1) and trailing edge 3) and chordwise plane at the wing tip 2) and middle of the wing 4) are
considered. The dotted vertical lines indicate intersections between planes where the velocities perpendicular to the wing surface in both images should be
the same. b) PIV image plane composite used to image the entire wing. The composite image plane was taken at a distance of 5 mm from the wing edge.

small. In addition, their study was performed in mineral oil with a
density several orders of magnitude greater than air. Because the
effort in the research presented in this paper was focused specifically
on determining the relative magnitude of the vortex contribution to
the overall lift force rather than an exact accounting of all measured
force, it is reasonable to consider the effects of added mass inertia to
be some small component contained within the resulting
aerodynamic force component.

Figure 5 shows the DPIV setup for the experiment. A Megaplus
ES 1.0 camera was used operating in the “frame-straddling” mode of
image acquisition required for short interframe times required for
PIV image acquisition. The camera synchronization with the frame
grabber (EPIX) and laser firing (Spectra Physics, double pulsed
300 mJ/pulse 10 pulse/s Nd:YAG) is controlled via the strobe
signal of the camera. The delay generator (Stanford Research
DG 535) was used to trigger the PIV laser flash lamps and
Q switches. The pulse that sends a signal starts all of the timing events
and is in phase with the laser repetition rate. The trigger pulse from
the flapping motion is used to trigger the camera. To trigger the pulse
using the flapping motion, an emitter and detector are installed
aligned with the peak of the flapping motion. When the flapping
wings interrupt the beam, the detector produces a regular signal. The
laser beam used for PIV is split through a cylindrical lens to generate
the light sheet. The light scattered by the smoke particles (0.2-2 pm)
is recorded on a 1 k x 1 k 8-bit progressive scan charge-coupled
device (CCD) camera using a 25 mm Cosmicar C mount lens. The
PIV images were taken at numerous locations along the span and at
numerous chordwise stations (Fig. 6).

DPIV V2.0 [Innovative Scientific Solutions, Inc. (ISSI)] was used
for postprocessing using a 64 pixel correlation size and a 50% image
overlap. Image coverage was 4.3 cm x 4.3 cm, pulse separation
time was 50 us, and there was an average of 20 particles per
interrogation region. Using the induced particle velocity method of

Westerweel [21], and taking into consideration the maximum
acceleration seen in the experiment, an error in velocity of less than
0.5% can be expected.

B. Flapping Mechanism and Wings

The flapping mechanism was adapted from a Cybird P1 remote
control ornithopter model (Fig. 7a). The flapping mechanism is
powered by a dc power supply. Depending upon the wing type, the
operating angle was a weak function of flapping frequency. This was
believed to result from lash in the mechanism but was not believed to
have been significant enough to affect the predicted aerodynamic
force once the inertial effects were removed. The frequency of 4 Hz

D=+

b)

Fig. 7 a) The flapping mechanism; b) the coordinate system definition
and the operating angle of the flapping mechanism. o =41 deg,
B =18 deg,? =0.116,¢" = 0.134 at a flapping frequency of 4 Hz with
no. 4 wing. The shaded squares represent sample PIV image planes.
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Table 1 Characteristics of the wings used in the experiment

Wing no. Semispan, cm Chord, cm Aspect ratio  Mass

1 20 10 4 1599 ¢
2 15 10 3 9.79 g
3 15 75 4 778 ¢
4 155 75 4.1 734 ¢
5 55 75 15 348¢

was selected from Alford and Altman [22] which demonstrated a
strong correlation between span and flap frequency for flapping
animals. The flapping frequency was set using a high precision strobe
and remained constant to within roughly 1.5%. Table 1 shows the
properties of the various wings used in the experiment. Figure 7b
provides a reference coordinate system.

IV. Analytical Approach
A. Definition of Reynolds Number

Because there is some ambiguity in the literature regarding the
definitions used for the Reynolds number (Re) in flapping wings the
definition used is presented below for clarity. A mean Reynolds
number for hovering flight based on the mean chord ¢ (=21/AR) and
the mean wing tip velocity U (=2®f1) has been defined as follows
[23]:

_pcU _ p®fI

Re =
2 HAR

2

B. Computation of the Lift Force due to the Vortex

Lin and Rockwell [24] used a series of instantaneous patterns of
vorticity obtained through PIV to calculate the force within a fixed
visual frame. One formulation they cited was based on Lighthill’s
interpretation [25] where the vorticity to be included in force
determination is the excess (shed) vorticity. For a two-dimensional,
inviscid, incompressible flow, the instantaneous lift per unit length
can be found using the following equation:

()]

To determine the effects of both sectional lift and drag forces from
an instantaneous velocity field, Noca et al. [26] derived the following

from the momentum equation:
F’:p/uxa)sz—pygn-u(xxwz)dS
A s
+¢n~[x-(V-T)I—x(V~T)+T]dS 4)
s

When applying this equation to the determination of force production
due to leading-edge vortices on flapping wings in a highly three-
dimensional flowfield, Birch et al. [15] found that the sectional lift
estimate based on circulation was contained within the first term in
Eq. (4). They applied this term likewise in the determination of
spanwise circulation. They expanded the first term into freestream
and perturbation terms as follows:

p [uxo.aa=puro-p [voaa

A

This term was referred by Noca et al. as the Kutta—Zhukovski
(Joukowski) term. Birch et al. concluded that a large percentage of
the lift experienced by the wing was due explicitly to the
pUy(2)T,(2) term. Most would recognize this term as the traditional
result of the Kutta—Joukowski theorem commonly used in steady
state to calculate the lift force directly from circulation. The unsteady
result from Lin and Rockwell [24] [Eq. (3)] was reduced and applied
similarly in the determination of lift force from circulation calculated
from an instantaneous velocity field. A fixed control volume is
selected in the inertial frame of reference around the wing to calculate
the lift force generated.

To determine the magnitude of the contribution of the out-of-plane
velocity, a number of chordwise planar slices were evaluated in the
same locations as the spanwise planar slices used. Figure 8a shows
representative flow features in the chordwise plane along with the
velocity magnitudes. In general the velocity magnitudes were
approximately 75% of those found in the spanwise plane and the flow
features were considerably smaller. Figure 8a shows a result
considered representative of the majority of chordwise images taken
next to a representative spanwise image (Fig. 8a). If a complete
accounting of the aerodynamic forces was going to be completed, the
out-of-plane flow would need to be included in the analysis. The
focus of the present research was on isolating the forces generated by
vortical flow in the spanwise plane, however. An approach to
decomposing a three-dimensional flowfield into chordwise and
spanwise slices similar to that used by Birch et al. [15] was thus
employed.
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Fig. 8 Speed distribution (in units of m/s) of the flapping wing in the start of the downstroke at 4 Hz with the no. 4 wing. a) Chordwise plane; b) spanwise

plane (planes 1 and 2 in Fig. 6a) (¢ = +31 deg).
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V. Results and Discussion
A. Time History of Flapping Motion

An example of flapping angle variation with time can be seen in
Fig. 9a for the 4 Hz case (0.25 s period) with the no. 2 wing from
Table 1. In this figure it is evident that there is a slight asymmetry in
the flapping motion. The time spent in the downstroke is 0.116 s
(0 < T* <0.464) leaving 0.134 s (0.464 < T* < 1) in the upstroke.
This yields average speeds of 1.91 and 1.52 m/s in the downstroke
and upstroke, respectively, with maximum speeds of 3.7 and
2.8 m/s in the downstroke and upstroke, respectively. The effects of
this asymmetry will be seen later in differences in the formation and
shedding of vortices in the up- and downstrokes. Also in Fig. 9a the
approximated curve fit can be seen superimposed over the
experimental results. For the same (experimental) case, the tangential
velocity calculated at the tip of the wing using the variation in
flapping angle with time can be seen in Fig. 9b alongside a
polynomial curve fit approximation. It was necessary to create a
smoothed approximation curve to the tangential velocity due to the
fact it was subsequently used to derive the acceleration. Figure 9¢
more clearly shows the relative time spent in the up- and
downstrokes. The magnitude of the maximum velocity in the
downstroke is clearly greater than in the upstroke. The tangential
acceleration variation with time can be seen in Fig. 9d. As expected
the maximum accelerations occur in the transitions from downstroke
to upstroke and vice versa.

B. Force due to Inertia

Inertial forces shown here represent the acceleration force on the
mass of the wing. The aforementioned representative results from the
high frame rate camera are used to generate the inertial force
distribution which is presented both in raw form and in the form of an

Flapping angle
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approximated polynomial curve fit. Figure 10a shows the total lift
force variation and the inertial force variation throughout the entire
cycle from the beginning of the downstroke to the end of the upstroke
for a typical data set. As is commonly cited in the literature, the
inertial force is typically of the same order of magnitude as the
aerodynamic force. These trends were observed for wing numbers 1,
2, and 3 at flapping frequencies of 3, 4, 5, and 6 Hz.

Figure 10b shows the resulting lift force contribution of the
aerodynamic force in which the inertial force is subtracted from the
total measured lift force. At the beginning of the downstroke and at
the end of the upstroke, the inertial force is greater than the total
measured force. This is due to a negative aerodynamic lift force
(Fig. 10b) which cancels out the inertial contribution. It is noted that
the trends for temporal variation in total aerodynamic lift force and
measured total lift force are similar in shape throughout most of the
flapping cycle.

It will be shown later that at the top of the downstroke a vortex is
formed that is eventually shed in the downstroke. Although not seen
in Fig. 10, occasionally there was a small increase in lift force at the
stroke reversal. In these instances it is believed to be due to the shed
vorticity impacting the wing (wake capture). As will also be
discussed later, no large-scale streamwise vorticity was found to
exist in the upstroke. Clearly the maximum acceleration in transition
from downstroke to upstroke is considerably less than in the upstroke
to downstroke transition. This is thought to have directly impacted
the formation of vortices in these transitions.

C. Wing Parametric Study

Figure 11 shows results of a parametric study on wing dimensions.
Comparing Figs. 11a and 11b shows that the total force for both
frequencies and across all wings tested peaks early in the
downstroke. At both frequencies the measured force due to the stroke
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Fig. 9 The flapping angle, tangential velocity, and acceleration variation using real data and approximated data using wing no. 2 at a 4 Hz flapping
frequency during one complete cycle. a) Flap angle variation; b) tangential velocity at the wing tip calculated using measured flap angle variation; c) the
tangential velocity at the wing tip calculated using the approximated value of flapping angle variation; d) the tangential acceleration at the wing tip

calculated using the approximated value of the flap angle variation.
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Flapping Inertial Force and Total Lift Force Coefficient per Unit Chord
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Fig. 10 The temporal variation in force coefficient using wing no. 2 at a 5 Hz flapping frequency during one complete cycle. a) Total force coefficient
including the inertia force coefficient and b) isolated aerodynamic force coefficient.

reversal is greatest for the largest wing. In addition, less time is spent
in the downstroke than the upstroke for all cases. Figures 11cand 11d
provide lift coefficient data that contrast the force results well. The
overall shape of all normalized curves is quite similar. Most notable
from the coefficient results is that the two smaller (span) wings
generate peak lift coefficients at lower flapping frequency than the
larger wing tested. There is no such correlation to the chord length.
This result supports the previously identified correlation between
flapping frequency and wing span found in nature [22] and provides
more insight into the possible importance of geometry and flapping
frequency in determining an optimal value of circulation for any
given vortex [27].

Variation in Measured Total Force at 2 Hz

D. Streamwise Vorticity

Figure 12 provides an example of one type of vortex production
typically observed during testing. The figure shows a raw image of
small-scale shed vortices during the downstroke alongside PIV
results for vorticity. The noise rejection threshold for vorticity was on
the order of 10%. Figure 13 shows the vorticity distribution and
magnitude at two different flapping frequencies during the
downstroke relative to the wing tip. The trajectory of the shed
vortices is notably different across the two vorticity figures. In
addition, it can be observed from the figures that the large-scale wing
tip vortex was not generated during the downstroke at low frequency
(for the large span wing). However, at the higher flapping

Variation in Measured Total Force at 5 Hz
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Fig. 12 Theno. 4 wing at ¢ =28 deg (I = 0.027) at the beginning of
the downstroke at a 4 Hz flapping frequency. The chordwise location of
the light sheet is 0.5 cm (x/c = 0.067) from the leading edge. a) Flow
visualization; b) vorticity from image pair including a). The values
denote vorticity (s~!) x1000.
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Fig. 13 Vorticity distribution over the no. 1 wing in the middle of the
downstroke at ¢ =0 deg and chordwise light sheet location of 0.5 cm
(x/c = 0.05) from the leading edge. a) 4 Hz frequency with small-scale
vortex shedding (Re = 11, 340); b) 5 Hz frequency with the large-scale
vortex present (Re = 17, 600). The values denote vorticity (s~!) x1000.

frequencies tested well-formed large-scale wing tip vortices were
generated.

Results from the present experiments show that the wing tip vortex
is always seen early in the downstroke. However, the wing tip vortex
was not seen during the upstroke. This is likely related to the
asymmetry in the time history of the up- and downstrokes effecting
formation of the vortices.

E. Vortex Force Coefficient Variation in the Downstroke

Figure 14 compares the magnitude of the vortex force early in the
downstroke at 2 and 4 Hz flapping frequencies for the no. 4 wing. In

yet another context, the smaller span wing can be observed
generating a higher coefficient at a lower flapping frequency
providing more evidence of a connection between optimal flapping
frequency and wing planform geometry and the force generated due
to circulation. The vortex force is gradually increasing as the stroke
progresses for the duration of the flapping cycle included in Fig. 14.

Figure 15 is a case study for the vortex force coefficient
distribution along the wing for the cases where the vortex is attached
to the wing surface in the spanwise plane or shed from the wing in the
middle of the downstroke. Figure 15a shows the lift coefficient
distribution for the shed vortex case (4 Hz flapping frequency) and
Fig. 15b shows the lift coefficient distribution for the large attached
vortex case. The lift force available in the control volume [24] in
vortex force coefficient form is 0.3646,/m (per meter of chord) when
the large-scale attached vortex was present, compared to 0.1292/m
when smaller scale vortex shedding was occurring.

Figure 16 shows the calculated vortex force coefficient and
vorticity as the flapping motion evolves early in the downstroke at a
2 Hz flapping frequency. Although there is scatter due to the
instantaneous nature of the PIV image pairs used to determine the
coefficients and forces, some clear trends can be observed. As the
flapping motion progresses, the lift due to the vortex decreases
slightly at the beginning of the downstroke. This decrease is thought
to originate from the residual upward motion of the fluid during
stroke reversal due to the low (relative) pressure of the fluid trailing
behind the wing ultimately impacting the wing and subsequently
detracting from the net force. The lift force due to the vortex increases
again from the minimum value because the circulation increases as
the downstroke evolves (Fig. 16, region B). The lift force decreases
again from the maximum value because the vortices are shed or
dissipate as the stroke evolves (Fig. 16a, region C). It is noted that for
the values of lift force presented in all vortex derived lift figures, lift
from only one wing is represented (vs two wings for measured
aerodynamic force).

In another instance (Fig. 17 for wing no. 5 at a 4 Hz flapping
frequency), the shape of the vortex lift coefficient variation
throughout the flapping cycle (Fig. 17a) was markedly different
when compared to the previous case (Fig. 16a). This difference is
most likely due to the dramatic contrast in aspect ratio between the
two cases. The wing used in Fig. 17 has a much lower aspect ratio due
to a drastic reduction in span. Although the reduction in absolute
span enabled DPIV evaluation of the entire wing semispan, the
temporal variation of the vortex formation and shedding was quite
different at the frequency shown. Whereas the vortex lift coefficient
peaked at a 7* of approximately 0.09 in Fig. 16, the peak vortex lift
coefficient in Fig. 17 can be seen closer to a 7* of approximately
0.06. Additionally, the suspected “wake capture” effects present in
Fig. 16 appear to be absent in the results in Fig. 17.

VI. Conclusions

Thin flat plate zero pitch angle wings were flapped in quiescent air.
In the process of investigating streamwise vorticity, a relationship
was found to exist between wing span and flapping frequency in the
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Fig. 14 The spanwise vortex coefficient force distribution early in downstroke at a) 2 Hz frequency, Re = 2680 (no. 4 wing); b) 4 Hz frequency,

Re = 6310 (no. 4 wing).
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Fig. 15 a), b) The distribution of the vortex force coefficient in the spanwise plane in the middle of the downstroke (with the no. 1 wing) at4 Hz and 5 Hz
flapping frequencies, respectively. The light sheet is 5 mm from the leading edge (¢ =0 deg).
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Fig. 16 At a2 Hz flapping frequency with the no. 4 wing. a) The vortex lift coefficient vs normalized time from the beginning of the downstroke; b) the
maximum vorticity vs normalized time from the beginning of the downstroke. The points represent the vortex lift force coefficient variation calculated
from the PIV results. The dotted lines represent the approximate lift force coefficient variation or maximum vorticity variation using a fifth degree
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Fig. 17 a) Vortex lift coefficient variation during the downstroke in the presence of the large-scale spanwise planar vortex b) instantaneous vorticity
over the entire semispan (¢ = —2 deg). For a 4 Hz flapping frequency with the no. 5 wing, vorticity (s!) x1000.

determination of the presence or absence of attached large-scale
vortices. This result would appear to validate the concept of the
existence of an optimal level of circulation a given vortex can accept
before vortex separation occurs.

The presence of streamwise vorticity in the vicinity of the wing tip
contributes to lift in thin flat plate zero pitch angle flapping wings in
quiescent air. When isolated, inertial force contributions were found
to be of the same order of magnitude as the aerodynamic force

contributions. Aerodynamic force variation was compared for a
number of wings of different aspect ratios. The aerodynamic force
variations set the context for discussion of vortex force contributions.
The effects of the parametric variations of wing aspect ratio on vortex
formation and shedding and subsequently vortex force variation
were discussed. The time-dependent force variation due to vortex
development early in the downstroke was also shown for a number of
different cases. There is still a great deal of knowledge to be obtained
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through continued study of the simple flapping motion in quiescent
air alone as there are numerous variables (pitch angle, stroke plane
inclination angle, greater flap amplitude variation, wider range of
flapping frequency variability, etc.) that have yet to be considered.
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